Multi-Objective Optimization Method for Posture Prediction of Symmetric Static Lifting Using a Three-Dimensional Human Model

Author:

Azizi Sirous,Dadarkhah Afsaneh,Asgharpour Masouleh Alireza

Abstract

Background: The development of virtual human models has recently gained considerable attention in biomechanical studies intending to design for ergonomics. The computer-based simulations of virtual human models can reduce the time and cost of the design cycle. There is an increasing interest in finding the realistic posture of the human body with applications in prototype design and reduction of injuries in the workplace. Objectives: This paper presents a generic method based on a multi-objective optimization (MOO) for posture prediction of a sagittal-plane lifting task. Methods: Improved biomechanical models are used to formulate the predicted posture as a MOO problem. The lifting task has been defined by seven performance measures that are mathematically represented by the weighted sum of cost functions. Specific weights are assigned for each cost function to predict both stoop and squat type postures. Some inequality constraints have been used to ensure that the virtual human does not assume a completely unrealistic configuration. Results: The method can predict the hand configuration effectively. Simulations reveal that predicting a squat posture requires the minimization of certain objective functions, while these measures are less significant for the prediction of a stooped posture. Conclusions: In this study, a MOO-based posture prediction model with a validation process is presented. We employed a three-dimensional model to evaluate the applicability of using a combination of seven performance measures to the posture prediction of symmetric lifting tasks. Results have been compared with the available empirical data to validate the simulated postures. Furthermore, the assigned weights are obtained for a range of percentiles from 50% male to 90% female according to the postures obtained by 3D SSPPTM software.

Publisher

Briefland

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3