Improved Visual Detection of speB Gene in Streptococcus pyogenes Isolates by Real-time Loop-Mediated Isothermal Amplification Turbidimetry Method

Author:

Simon Simon Azi,Kumar Subbiah Suresh,Thian Lung Than Leslie,Osman Malina,Awang Hamat Rukman

Abstract

Background: Group A Streptococcus (GAS) causes a wide array of clinical manifestations ranging from mild pharyngitis to suppurative and non-suppurative severe debilitating diseases. Hence, a simple, rapid detection method with high sensitivity and specificity is needed. Objectives: This study embarked on the visual detection of the streptococcal pyrogenic exotoxin B (speB) gene by real-time turbidimetry and loop-mediated isothermal amplification (RT-LAMP) methods. The real-time monitoring of the sigmoidal graph generated from a turbidimetry method was incorporated in the assay. Methods: The amplification of the speB gene was virtually observed in real-time monitoring of the graph (sigmoidal curve) generated via a turbidimeter, thus providing a “guide” to accurately estimate the time to positivity for the gene detection. Results: The targeted gene was detected at 15 min but was optimally amplified within 45 min at an isothermal temperature of 63°C with 100% specificity using an established set of primers. The formation of sigmoidal curves was correlated with other visual observations by the naked eye (from orange to green), ultra-violet light (green fluorescence), and agarose gel electrophoresis. The improved detection limit of the real-time RT-LAMP assay was also observed compared to conventional PCR assay (0.001 pg/µL versus 1 ng/µL). Conclusions: The improved visual detection of RT-LAMP assay could provide additional insight for rapid, cost-effective, and reliable identification of GAS via speB gene detection in low or middle-income countries. It could also be a very important tool to improve the healthcare management of patients infected with GAS in the future.

Publisher

Briefland

Subject

Infectious Diseases,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3