The Effect of Salinity Stress on the Antibacterial Activity of SpirulinaPlatensis Algae

Author:

Sanchooli Narjes,Rahdari Abdolali

Abstract

Background: The production of secondary metabolites in different strains of microalgae varies and is likely dependent on environmental conditions. Consequently, the production of bioactive substances as secondary metabolites occurs in microalgae to aid their survival in adverse environmental conditions such as salinity stress. Objectives: The purpose of this study is to investigate the antibacterial activity of the methanolic extract of Spirulina platensis algae cultivated under different salinity stresses against Yersinia rukeri, Escherichia coli, Salmonella sp., and Vibrio cholerae. Methods: The broth microdilution method was used to evaluate the growth inhibitory activity of the extracts against Yersinia ruckeri, Salmonella sp., Escherichia coli, and Vibrio cholerae bacteria. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined by this method, and the diameter of the inhibition zone was assessed through the well diffusion method. Results: In the treatment with algae extract grown under 3.5 ppt salinity stress, the concentrations of 50 and 25 mg/mL extract showed the largest inhibition zone diameter against Salmonella sp. compared to other bacteria. Under 7 ppt salinity stress, all studied concentrations of algal extract exhibited a higher inhibition zone diameter against V. cholerae compared to other bacteria. The results of comparing different concentrations of algae extract between the two salinity stresses of 3.5 and 7 ppt for each bacterium showed a significant difference (P < 0.05). As salinity increased, the diameter of the inhibition zone also increased for all bacteria. Conclusions: Our results showed an increase in the antibacterial activity of the methanolic extract of Spirulina platensis with higher salinity stress levels. Therefore, cultivating Spirulina algae in salt water can be a cost-effective and suitable method to produce more secondary metabolites for use in the pharmaceutical industry.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3