Comparison of Direct Sequencing with Real-time PCR High Resolution Melt and PCR Restriction Fragment Length Polymorphism Analysis to Identify Clinically Important Candida Species

Author:

Yassin Zeynab,Shirvani Fariba,Fattahi MahsaORCID

Abstract

Background: Candida albicans is the predominant yeast reported from human infection. Non-albicans Candida species have been recently developed as medically vital fungi. Therefore, it is essential to detect and identify the pathogens at the species level to prescribe appropriate treatment. Methods: This study assessed two complementary methods, including real-time polymerase chain reaction-high resolution melt (PCR-HRM) and polymerase chain reaction-restriction fragment length morphism (PCR-RFLP) with standard PCR and Sanger sequencing as the benchmark. Results: In total, 66 samples were tested, and two newly-advanced assays were more effective and displayed comprehensive concordance (66/66, 100%) with Sanger sequencing outcomes. Moreover, accurate and economical tests were positively advanced by real-time PCR-HRM for C. albicans and C. parapsilosis complexes. Conclusions: Given the number of studies performed on the comparison of sensitivity and specificity of phenotypic and genotypic methods to diagnose and identify invasive fungal pathogens and the findings of this study, it could be stated that the correlative PCR-HRM and PCR-RFLP methods were effectively advanced as substitutes for conventional Sanger sequencing for the reasonable identification. However, supplementary evaluations and confirming studies should be carried out with a broad range of samples to standardize this method for routine application in medical laboratories.

Publisher

Briefland

Subject

Toxicology,Public Health, Environmental and Occupational Health,Critical Care and Intensive Care Medicine,Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3