Optimum Surfactant Concentration for Preparation of Amiodarone Loaded Solid Lipid Nanoparticles: Theoretical Estimation Versus Experimental Results by Box-Behnken Design

Author:

Khaleseh FarnazORCID,Barzegar-Jalali MohammadORCID,Zakeri-Milani ParvinORCID,Islambulchilar ZibaORCID,Valizadeh HadiORCID

Abstract

Background: Solid lipid nanoparticles (SLNs) are colloidal carriers made up of lipids that are stabilized by surfactant molecules. The lipid matrix remains solid at body temperature. A significant challenge in the preparation of SLNs is determining the optimal concentration of surfactants due to their potential toxicity. Objectives: During the preparation of SLNs, micelle structures tend to form at high concentrations of surfactants. Since micelles exhibit different properties from SLNs, using the optimum concentration of surfactants leads to the preparation of a consistent formulation of SLNs. This was theoretically predicted in this study and then compared with experimental results. Methods: In this study, amiodarone-loaded SLNs were produced via a hot homogenization process. The design of experiments was utilized to explore effective process parameters, as several factors influence the formulation characteristics. The concentration of surfactants was optimized using a Box-Behnken design. The results were compared with a theoretical equation developed in this study, which estimates the concentration of surfactants needed to cover the surface of the particles. Assessments included particle size and morphology, size distribution, drug loading percentage (DL%), and encapsulation efficiency (%). Results: The particle size of the optimum formulation was 74 ± 1.5 nm, with DL% and EE% being 14.81 ± 0.8% and 97.58 ± 2.5%, respectively. The formulation contained 2.3% Witepsol, 0.25% glyceryl monostearate (GMS), 0.5% amiodarone (AMI), 0.02% sodium lauryl sulfate (SLS), 0.05% poloxamer, and 0.17% lecithin. The total surface area of the particles was estimated according to the equation 6× (volume of the lipid phase)/ (diameter of particles), which can be applied to determine the concentration of surfactants required for preparing SLNs. Conclusions: The results indicated that the theoretical equation was suitable for estimating the optimum concentration of surfactant in the aqueous phase to form SLNs and adequately cover the lipid surface. Mathematical estimations were comparable to the experimental results from the Box-Behnken design. Consequently, the formulation consisted of SLNs without any micellar structure, and the applied concentrations of surfactants effectively covered the surface of the particles.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3