A Novel Composite Nano-scaffold with Potential Usage as Skin Dermo-epidermal Grafts for Chronic Wound Treatment

Author:

Moradi Sohrab,Nilforoushzadeh Mohammad Ali,Zargan Jamil,Nazarian Shahram,Brouki Milan Peiman

Abstract

Background: Nano-scaffolds loaded with bioactive compounds such as ZnO nanoparticles (ZnO-NPs), as tissue-engineered artificial skin grafts, can be a suitable substitute for extracellular matrix and greatly contribute to accelerating chronic wound treatment by decreasing the chance of bacterial infection. Methods: Silk fibroin nanofiber was fabricated by using electrospinning and three-dimensional porous hybrids (3DPH) nano-scaffold with composite of sodium alginate/ZnO-NPs solution and silk fibroin electrospun nanofibers by adopting freeze-drying method. Successful configuration of nanofibers and porous nano-scaffolds were confirmed using field emission scanning electron microscopy (FE-SEM). Antimicrobial activity, cell attachment, and cytotoxicity evaluation of scaffolds were performed by employing disk diffusion method, L929 cell culture, and MTT assay, respectively. Results: Antibacterial analysis of 3DPH nano-scaffolds revealed their appropriate antibacterial activity against the Staphylococcus aureus and the Escherichia coli bacteria. Furthermore, the results from cytotoxicity and cell adhesion analyses indicated the appropriate cell attachment, viability, and proliferation on the silk fibroin nanofibers and 3DPH nano-scaffold, which are fundamental for wound healing and skin dermo-epidermal grafts. Conclusions: In sum, silk fibroin nanofiber as an epidermal graft and 3DPH nano-scaffold loaded with ZnO-NPs as a dermal graft were fabricated. Moreover, 1.5% (w/v) concentrations of ZnO-NPs were selected and incorporated into the 3DPH nano-scaffold. Considering the promising results of biological analyses, the nanofibrous and 3DPH nano-scaffolds composite may have been suitable for skin dermo-epidermal grafts and skin regeneration.

Publisher

Briefland

Subject

Dermatology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3