Anti- Acinetobacter baumannii Potential of Some Flavonoid Compounds and Oxadiazole Derivatives: In Silico & In Vitro

Author:

Gohari Sahar,Nejati Khoei SarinaORCID,SarveAhrabi YasinORCID

Abstract

Background: Acinetobacter baumanniiis an important pathogen due to its ability to cause a wide range of infections, particularly in healthcare settings, and its propensity to develop multidrug resistance, posing significant challenges for treatment and infection control measures. Flavonoid and Oxadiazoles compounds play a significant role in human health due to their biological activities. Objectives: The purpose of this study is to investigate the anti- A. baumannii effects of flavonoid compounds and oxadiazole derivatives. Methods: Structures with oxadiazole central core were re-synthesized. Agar well diffusion, minimum inhibitory concentration, and minimum bactericidal concentration methods were performed In vitro. The structure of the oxadiazole derivatives and 10 compounds of flavonoids as ligands were optimized by the mm2 method with Chem3D v20.1.1.125 software. The ligands were evaluated as an inhibitor against the active site of the OXA-23 by AutodackVina software. The output results were analyzed and evaluated by Discovery Studio v16.1.0 software. Results: The results demonstrated that derivatives B (oxadiazole with dibromophenyl) and D (oxadiazole with dimethoxyphenyl) exhibited stronger anti-A. baumannii effects compared to other compounds and the control sample. Furthermore, the In silico results revealed the inhibitory effects of derivatives D from oxadiazole and eriocitrin and narirutin from flavonoid compounds against OXA-23 by forming hydrogen bonds for inhibition. Conclusions: The dimethoxyphenyl structure with the oxadiazole core and eriocitrin and narirutin from flavonoid compounds can be used as an anti- A. baumannii agent in the development of therapeutic drugs.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3