Alginate-Gelatin Microspheres Protect Human Mesenchymal Stem Cells During Deep Cryopreservation

Author:

Saberianpour Shirin,Rahbarghazi Reza,Rezaie Nezhad Zamani Arezoo,Ahmadi Mahdi,Heidarzade Morteza,Mozaffari Shahroz Amin

Abstract

Background: The need for on-demand biological products has been raised during the last decades. To prepare ready-to-use organ-related products, it necessitates a bulk cell reservoir. In this regard, stem cells, especially mesenchymal stem cells, have numerous therapeutic properties in tissue repair. Therefore, the advent of novel cell banking systems is inevitable to maintain cells ready-to-use. Objectives: In the current study, the cryoprotective effects of alginate-gelatin were investigated on human mesenchymal stem cells after seven days. Methods: Mesenchymal stem cells were classified into two groups; the Control and Encapsulated cells. Cells were encapsulated by using the mixture of alginate (1% v/v) and 2% gelatin and 1% CaCl2, a cross-linker, and vitrified in liquid nitrogen in freezing medium containing 10% dimethyl sulfoxide. After seven days, mesenchymal stem cells were thawed and decapsulated by 0.01 M sodium citrate solution. The cell survival rate was monitored by using MTT assay. Flow cytometry analysis of annexin-V/PI was used to determine the number of apoptotic cells. Results: These data showed that encapsulation had a superior effect on maintaining cell viability after the freeze-thaw procedure compared to the control group (P < 0.05). We found a significant decrease in the number of early- and late-stage apoptotic cells in mesenchymal stem cells inside the alginate-gelatin microspheres seven days after deep freezing (P < 0.05). As expected, cell cycle analysis specified the lack of dynamic activity in cells from both groups. Cells at phases S and G2/M reached zero. Conclusions: These findings showed that encapsulation of human mesenchymal stem cells with alginate-gelatin microspheres could reduce deep freeze/thaw insult and decrease the detrimental effect of cryoprotectant compared to non-capsulated cells.

Publisher

Briefland

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3