Abstract
Background: Chromium and its salts, as well as chromium-containing compounds, play a major role in numerous manufacturing processes and have been contraindicated in carcinogenic, toxic, and mutagenic conditions in people involved in these processes. Objectives: This study investigated the ameliorative role of Acacia nilotica aqueous leave extract (ANLA) on potassium dichromate-induced liver and blood toxicity in male and female rats. Phytochemical screening and nutrient composition of ANLA were also evaluated. Methods: Phytochemical and proximate analysis of ANLA were carried out. Twenty adult male and female rats each were divided into four groups (n = 10): (1) control; (2) potassium dichromate (PDC; 0.625 mg/kg body weight); (3) PDC co-treated with ANLA after seven days (650 mg/kg bwt); and (4) PDC co-treated with ANLA (650 mg/kg bwt) simultaneously for 21 days. Biomarkers of liver injury, lipid, and hematological imbalance were assessed. Tissue histology and toxicant retention were done. Results: Various plant secondary metabolites (flavonoids, terpenoids, tannins, phenols, saponins, cardiac glycosides, alkaloids, and anthraquinones) and nutrients (protein = 67.41 ± 2.44%; carbohydrate = 9.87 ± 1.87%; fiber = 10.01 ± 1.21%; mineral = 6.41 ± 1.08%; fat and oil = 6.63 ± 0.93%) were identified in the leave. Exposure to chromium significantly (P < 0.05) increased plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) with a concomitant decrease in the activity of these enzymes in the liver of both male and female rats. The exposure also altered protein, triglyceride, and cholesterol levels in the plasma and liver as well as hematological indices. Organ chromium retention and pathological changes were also observed. ANLA modulated these chromium-induced alterations in the rats. Conclusions: Based on the results, ANLA possesses ameliorative property against PDC-induced toxicity in rats. Thus it may be used to combat chromium poisoning. The nutritive potential of A. nilotica leaves may also be maximized.
Subject
General Pharmacology, Toxicology and Pharmaceutics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献