Study the Mechanism of Antileishmanial Action of Xanthium strumarium Against Amastigotes Stages in Leishmania major: A Metabolomics Approach

Author:

Ahmadi Mohammad,Akbari ZibaORCID,Zamani ZahraORCID,Haji Hosseini RezaORCID,Arjmand MohammadORCID

Abstract

Background: Leishmaniasis is among the most important neglected tropical infections, affecting millions of people worldwide. Since 1945, chemotherapy has been the primary treatment for leishmaniasis; however, lengthy and costly treatments associated with various side effects and strains resistant to the conventional therapy have dramatically reduced chemotherapy compounds’ efficacy. Objectives: The antileishmanial activity of the leaf extract of Xanthium strumarium (Asteraceae) was studied. New insights into its mechanism of action toward Leishmania major were provided through a metabolomics-based study. Methods: J774 macrophages were cultured, infected with stationary promastigotes, and treated with different leaf extract concentrations for three days. Antileishmanial activity was assayed by the MTT colorimetric method, and cell metabolites were extracted. 1HNMR spectroscopy was applied, and outliers were analyzed using multivariate statistical analysis. Results: Xanthium strumarium extract (0.15 µg/mL) showed the best activity against L. major amastigotes with the infection rate (IR) and multiplication index (MI) values of 51% and 57%, respectively. The action of X. strumarium extract on amastigotes was comparable with amphotericin B as the positive control (0.015 µg/mL). According to the obtained P-values, pentanoate and coenzyme A biosynthesis, pentose and glucuronate metabolism, valine, leucine and isoleucine biosynthesis, galactose metabolism, amino sugar and nucleotide sugar metabolism were the most important metabolic pathways affected by the plant extract in the amastigote stage of L. major. Conclusions: Our finding demonstrated that X. strumarium leaf extract could be used for discovering and producing novel leishmanicidal medicines. Moreover, the affected metabolic pathways observed in this study could be potential candidates for drug targeting against leishmaniasis.

Publisher

Briefland

Subject

General Pharmacology, Toxicology and Pharmaceutics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3