Development and Application of Dtxr and Tox Genes Targeting Real-time PCR to Identify Corynebacterium diphtheriae, C. ulcerans, and C. pseudotuberculosis Simultaneously

Author:

Sunarno SunarnoORCID,Hartoyo Yudi,Amalia Novi,Sofiah Sundari Nur,Rizki Aulia,Puspandari NellyORCID,Febriyana DwiORCID,Febrianti TatiORCID,Saraswati Ratih DianORCID,Muna Fauzul,Novita RisqaORCID,Lienggonegoro Lisa AndrianiORCID,Ernawati Fitrah

Abstract

Background: Corynebacterium diphtheriae, C. ulcerans, and C. pseudotuberculosis are known as diphtheria-causing bacteria. Although diphtheria therapy is administered based on the clinical manifestations, some cases are mild and atypical. The immediate and accurate identification of diphtheria-causing bacteria is of paramount importance to prevent the spread of the disease and provide case management as early as possible. Unfortunately, conventional methods as the gold standard are time-consuming. Objectives: This study aimed to develop and implement a multiplex real-time PCR with the dtxR and tox genes as the target to identify three species of diphtheria-causing bacteria and screen their toxigenicity quickly and accurately. Methods: The research sample encompassed seven reference strains, one synthetic DNA, 30 archived isolates, and 924 clinical specimens isolated from 311 diphtheria cases and 613 close contacts. The conventional methods as the gold standard and the established PCR assay were used to verify the results of multiplex real-time PCR developed in this study. Results: The multiplex real-time PCR could identify seven reference strains, one synthetic DNA, and 30 archived isolates as accurately as the conventional methods and the established PCR. Similar to established PCR, the multiplex real-time PCR identified diphtheria-causing bacteria in 120 (38.6%) out of 311 and 12 (2%) out of 613 clinical specimens from diphtheria cases and close contacts, respectively. Meanwhile, the conventional methods identified diphtheria-causing bacteria in 79 (25.4%) out of 311 and three (0.5%) out of 613 clinical specimens. Conclusions: The multiplex real-time PCR developed in this study can be used to identify three species of diphtheria-causing bacteria and screen their toxigenicity quickly and accurately. However, in this study, no diphtheria-causing bacteria other than C. diphtheriae was found in the clinical samples using the PCR or conventional methods. PCR is more sensitive than the conventional methods and can be used as an additional test in diphtheria laboratories.

Publisher

Briefland

Subject

Infectious Diseases,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3