Detrimental Effect of Mobile Phone Electromagnetic Field on Permeability of Blood-Brain Barrier

Author:

Shabani Fatemeh,Jadidi MajidORCID,Esmaili Mohammad Hadi,Sameni Hamid Reza,Nazari Hossein

Abstract

Background: Exposure to different frequencies would have a profound effect on the brain tissue extract supernatant’s optical density and hexakis-2-methoxyisobutylisonitrile (99mTc-MIBI) build-up. Objectives: This study aimed to investigate the blood-brain barrier permeability after electromagnetic field irradiation. Methods: In this study, 150 male albino rats were randomly divided into 25 groups. They had an intraperitoneal injection of Evans blue 24 hours before experiments. Before 15 or 30-min Electromagnetic Field (EMF) irradiation (900, 1700, and 1900 MHz), 500 μCi (18.5 MBq) of 99mTc -MIBI was injected via the caudal vein. The rats decapitated 15, 30, 45, or 60 min after radiotracer injection to evaluate the brain-specific activity and brain tissue extract supernatant’s optical density. Results: No significant difference was found between the groups in 60-min post-injection activity after 15-min EMF radiation at 900, 1700, and 1900 MHz. The brain-specific activity with 30-min EMF radiation showed a significant increase in the 900 MHz group compared to others. Brain/whole body-specific activity in all experimental groups after 15-min EMF radiation showed no significant differences. On the other hand, the brain/whole body-specific activity ratio with 30-min EMF radiation showed a significant increase in the 900 MHz group compared to other groups. A comparison between the brain tissue extract supernatant’s optical density in the experimental groups after 15 and 30-min EMF radiation showed no significant difference in Evans blue accumulations in brains. Conclusions: It may be concluded that mobile phone electromagnetic field radiation may increase the blood-brain barrier permeability. As most humans use mobile phones for daily communications, all users around the world need to be advised of the effects of modern call devices.

Publisher

Briefland

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3