Establishment of Stable Chinese Hamster Ovary Cells Expressing Codon-Optimized Human Interferon-β Gene

Author:

Rezakhani Taleghani Maryam,Ghasemi Fahimeh,Tabandeh Fatemeh

Abstract

Background: Codon optimization is an efficient approach to achieve a higher level of heterologous gene expression and generate productive recombinant mammalian cell lines. In our previous work, based on the codon usage preference of Chinese hamster ovary (CHO) cells, a codon-optimized human interferon-beta (opt-hIFN-β) gene was redesigned and transiently expressed in a suspension-adapted CHO (CHO-s) cell line. Our results indicated a 2.8-fold increase in the expression level of the codon-optimized gene compared to the unmodified sequence. Objectives: In the current work, based on our previous results, a stable CHO-K1 cell line expressing the opt-hIFN-β gene was engineered, in which the opt-hIFN-β gene expression was confirmed by dot and western blotting analyses. Methods: The designed opt-hIFN-β sequence was digested and cloned into a pcDNA3.0 shuttle vector downstream to the cytomegalovirus (CMV) promoter. The verified recombinant plasmid was then linearized and transfected into a CHO-K1 cell line to integrate the opt-hIFN-β gene into the CHO-K1 genome. The transfected cells were then grown under the selective pressure of 450 µg/mL of G418 to develop a stable CHO-K1 cell line expressing the opt-hIFN-β gene. The enzyme-linked immunosorbent assay (ELISA) and dot and western blotting analyses were carried out to verify hIFN-β protein expression. Results: ELISA and dot and western blotting analyses confirmed the expression of hIFN-β in the stably-transfected CHO-K1 cells. Conclusions: Stable expression of the opt-hIFN-β gene in the CHO-K1 cell line was verified by ELISA and dot and western blotting analyses. This study was a pioneering work for further production of recombinant hIFN-β in the bioreactor.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3