Quantitative Brain MRI Signal Differences in Children with Congenital Portosystemic Shunt Based on 3D T1-Weighted Sequence

Author:

Zhou YingORCID,Guo Chen,Zhu Ming,Dong Su-ZhenORCID

Abstract

Background: Different degrees of T1-weighted (T1W) signal intensities in certain locations on brain magnetic resonance imaging (MRI) are characteristic features of neurological involvement in congenital portosystemic shunt (CPSS). Long-term accumulation of manganese (Mn) as a biomarker can lead to irreversible brain damage. Objectives: The aim of this study was to utilize quantitative brain MRI indicators to characterize brain signal differences in various regions in children with congenital portosystemic shunt. This may contribute to diagnosis, prognosis, and treatment decisions. Patients and Methods: This was a case-control study. Thirty-two patients diagnosed with CPSS based on at least one of the following imaging studies—abdominal ultrasound, Digital Subtraction Angiography (DSA), and Computed Tomography (CT)—and who underwent brain MRI prior to interventional treatment or surgery were included as the Case Group in this study. The age of these patients varied from 22 months to 15 years. Brain MRI of thirty children aged 2 to 15 years, identified without liver or structural diseases, were selected as the Control Group. The brain imaging protocol included an axial spin-echo T1-weighted image (T1WI), an axial T2-weighted image (T2WI), an axial diffusion-weighted imaging (DWI), an axial T2-fluid attenuated inversion recovery (FLAIR) sequence, and a sagittal gradient-echo 3D T1W thin-slice sequence, which can be reconstructed into axial and coronal planes. We utilized quantitative MRI assessment based on the 3D T1-weighted sequence to evaluate intracranial signal differences. The quantitative index was categorized into two types: Globus pallidus-to-frontal subcortical white matter Index (GFI) and anterior pituitary-to-pons Index (API). GFI and API were measured and statistically analyzed on the 3D T1W sequence between the Case Group and the Control Group. GFI of the Case Group was also measured and analyzed between the 3D T1W sequence and the standard T1W sequence. Correlation analysis was applied between the GFI ratios and ammonia levels, as well as between the API ratios and ammonia levels in the Case Group. The duration of the study was more than three months. Results: Significant differences in GFI and API were observed in the Case Group compared with the Control Group (P < 0.01). There was also a statistical difference in GFI between the 3D T1W sequence and the standard T1W sequence (P < 0.01). However, the GFI and API ratios were not correlated with ammonia levels (P > 0.05). The Pearson correlation values were 0.147 and 0.190, respectively. Conclusion: There was a correlation between different brain signals and congenital portosystemic shunt. Quantitative MRI assessment based on the 3D T1-weighted sequence could be used to evaluate these brain signal differences. A longitudinal study with multiple measurements would be beneficial for more accurately assessing such differences, enabling timely interventions, reducing complications, and avoiding lifelong drug therapy.

Publisher

Briefland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3