Suppressing Effect of Human Wharton’s Jelly Mesenchymal Stem Cell Secretomes on Oxidative Stress Induced by Breast Cancer Cell Line SK-BR3

Author:

Ahmadpour FatemehORCID,Karimi Afrooz,Saadatmandfar Mohammd mahdi,Karimi SamanehORCID

Abstract

Background: The main reason for treatment failure and the primary cause of breast cancer deaths is metastasis. Cancer features, such as epithelial to mesenchymal transition (EMT), invasiveness, stemness, and ability to metastasize, are significantly influenced by oxidative stress. Objectives: The primary objective of this work was to evaluate the effects of human Wharton’s jelly mesenchymal stem cell secretomes (hWJMSCs-Se) on oxidant contents and development of the breast cancer SK-BR3 cell line and alterations in EMT markers genes after treatment. Methods: SK-BR3 cells received 48 hours of treatment with 10, 25, or 50 μg/mL hWJMSCs-Se. The MTT test and colony formation were used to evaluate the SK-BR3 cells’ viability and proliferation capability. By using annexin V/propidium iodide (PI) staining, apoptosis was determined. The messenger ribonucleic acid (mRNA) expression levels in genes associated with antioxidants were additionally assessed. Antioxidant enzyme activity was checked after SK-BR3 treatment with hWJMSCs-Se. Results: In the hWJMSCs-Se-treated SK-BR3 cells, colony counts, and viability percentages decreased significantly with time and concentration. The treated cells displayed considerably greater apoptotic indices when compared to the control. Catalase (CAT), superoxide dismutase (SOD) activities, and glutathione (GSH) content were significantly greater in the hWJMSCs-Se-exposed SK-BR3 cells. The Vimentin gene and N-cadherin gene were significantly elevated in the treated cells, and E-cadherin and β-catenin decreased conversely. Conclusions: The present study suggests that the use of hWJMSCs in the treatment of human epidermal growth factor receptor 2 (HER2)-positive malignancies provides an innovative solution for cancer therapy. As the oxidant level and EMT pathway decreased, breast cancer cell growth was significantly restricted, and mortality increased.

Publisher

Briefland

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3