Co-occurrence of Carbapenemase-encoding Genes Among Klebsiella pneumoniae Clinical Isolates: Positive Relationship of bla NDM and bla SIM with Imipenem Resistance

Author:

Galehdar MaryamORCID,Ghane MaryamORCID,Babaeekhou LalehORCID

Abstract

Background: Carbapenem-resistant Klebsiella pneumoniae (CR-KP), known as a significant public health threat, is the most common causative agent of nosocomial and community-acquired infections. Objectives: This study aimed to evaluate resistance to carbapenems and determine the prevalence of carbapenemase genes and multilocus sequence typing (MLST) of K. pneumoniae clinical isolates. Methods: One-hundred K. pneumoniae isolates were evaluated. The minimum inhibitory concentrations (MIC) of imipenem and meropenem were assessed by the broth microdilution method. Multiplex-polymerase chain reaction (PCR) was applied to detect 11 carbapenemase-encoding genes belonging to different classes. The alleles and sequence types (ST) of three isolates were identified by MLST. Results: The MIC of carbapenems for the isolates ranged from 0.062 to 32 µg/mL. Overall, resistance rates to imipenem and meropenem were reported 11% and 34%, respectively. The bla IMP gene was the most abundant (78.4%), followed by bla OXA-48 (48.6%), bla GIM (27%), bla KPC (27%), bla SIM (21.6%), bla BIC (21.6%), bla NDM (16.2%), bla AIM (16.2%), bla VIM (16.2%), bla DIM (8.1%), and bla SPM (8.1%). The co-existence of carbapenemase genes was observed in 81.8% of the isolates. A positive relationship was found between the presence of bla NDM and bla SIM and resistance to imipenem. Multilocus sequence typing results showed three different sequence types, including ST14, ST5188, and ST1861. Conclusions: This study revealed a high prevalence of CR-KP isolates that suggests a high risk of horizontal gene transfer and potential to spread resistance among other strains. Since STs are reported for the first time in Iran, they can be considered as emerging strains.

Publisher

Briefland

Subject

Infectious Diseases,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3