Systematic Review of Detecting Sleep Apnea Using Artificial Intelligence: An Insight to Convolutional Neural Network Method

Author:

Samadi Behnam,Samadi ShahramORCID,Samadi Mehrshad,Samadi Sepehr,Samadi Mehrdad,Mohammadi Mahdi

Abstract

Background: Sleep apnea is a prevalent sleep disorder, especially in males and older ages. The common diagnostic methods, including polysomnography (PSG), are expensive, difficult to perform, and time-consuming. Numerous studies are focusing on developing easy-to-perform methods based on artificial intelligence (AI) for the early diagnosis of sleep apnea. This systematic review aimed to gather current methods based on the convolutional neural network (CNN) for the diagnosis of sleep apnea. Methods: Three international electronic databases (PubMed, Web of Science [WoS], and Scopus) were searched from 2010 to October 2023. All studies that have developed CNN-based methods for the diagnosis of sleep apnea and have accomplished the performance tests were included. Finally, the characteristics of the studies were extracted and summarized. Results: A total of 36 studies were included in this systematic review. Various physiological signals have been proposed to detect sleep apnea, including electrocardiogram (ECG), blood oxygen saturation (SpO2), sound signals, respiratory signals, electroencephalogram (EEG), and nasal airflow. Electrocardiogram was the most frequently used signal in the studies, followed by SpO2. The highest reported accuracy was achieved by SpO2 or ECG-based methods and with a one-dimensional CNN (1D-CNN) classifier. Using multiple signals did not necessarily increase the performance of test results. Conclusions: Diagnostic methods based on CNN can be used only as screening tools or home diagnosis of sleep apnea. These methods are easy to perform and can only reduce the diagnostic costs and waiting time for a sleep study in special scenarios. Nevertheless, PSG is still the gold standard for the diagnosis of sleep disorders.

Publisher

Briefland

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Attention Networks With Multi-Temporal Information Fusion for Sleep Apnea Detection;IEEE Open Journal of Engineering in Medicine and Biology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3