Expression Modulation of Immune Checkpoint Molecules by Ibrutinib and Everolimus Through STAT3 in MCF-7 Breast Cancer Cells

Author:

Soltanshahi Mohsen,Taghiloo Saeid,Asgarian-Omran Hossein

Abstract

: Tumor-targeted therapy with small-molecule inhibitors (SMIs) has been demonstrated to be a highly effective therapeutic strategy for various cancers. However, their possible associations with immune evasion mechanisms remain unknown. This study examined the association of inhibitors of the protein kinase B (AKT), mammalian target of rapamycin (mTOR), and Bruton’s tyrosine kinase (BTK) signaling pathways with the expression of immune checkpoint ligands programmed death-ligand 1 (PD-L1), CD155, and galectin-9 (Gal-9) in a breast cancer cell line. MCF-7 cells were treated with everolimus, MK-2206, and ibrutinib. An MTT assay was used to determine the optimal dose for all drugs. A real-time polymerase chain reaction was utilized to measure the mRNA expression of PD-L1, CD155, and Gal-9. The western blot technique was also employed to evaluate the protein expression of the phosphorylated signal transducer and activator of transcription 3 (STAT3). The optimal doses of everolimus, MK-2206, and ibrutinib were observed to be 200, 320, and 2000 nM, respectively. The PD-L1 and CD155 mRNA expression was significantly decreased following the treatment with everolimus and ibrutinib, but not with MK-2206. There were no differences in Gal-9 expression between the single-treated and control groups; however, combined treatment with everolimus and ibrutinib increased its mRNA expression. Everolimus and ibrutinib both inhibited constitutive STAT3 phosphorylation in MCF-7, which was more pronounced in combination treatment. The findings regarding the modulation of PD-L1, CD155, and Gal-9 molecules by SMIs emphasize the crosstalk between the expression of these immune checkpoint molecules and AKT/mTOR/BTK signaling pathways through STAT3 as a critical transcription factor.

Publisher

Briefland

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3