Sustainable Biopolymer Composites From Perlite, Plasticized and Unplasticized Poly(Lactic Acid)

Author:

Karahan Toprakci Hatice Aylin1ORCID,Savcı Deniz Yılmaz2ORCID,Toprakçı Ozan2ORCID

Affiliation:

1. YALOVA ÜNİVERSİTESİ

2. YALOVA UNIVERSITY

Abstract

In recent years, ecological pollution has reached critical levels and that has been experienced as climate change by all living organisms. Slowing down the negative effects of climate change depends on changing our consumption behavior. Based on that, people tend to prefer more environmentally friendly, sustainable raw materials, products and processes. Since polymers are one of the most widely used raw materials in the world, any improvement regarding their recycling or biodegradation process can significantly reduce the damage to nature. Considering this fact, manufacturers are taking initiatives to develop such products in line with the demand from consumers. As known, Poly(lactic acid) (PLA), one of the most consumed biodegradable polymers in the market, however there are various problems especially in film production due to its rigid structure. Plasticization is the easiest route to minimize this disadvantage. The aim of this study is to produce and characterize PLA composites with increased flexibility by using sustainable natural materials. In this context, glycerol-plasticized PLA and unplasticized PLA composites were prepared using perlite, a natural additive, and their morphological, thermal, and mechanical properties were investigated.

Funder

Yalova University, BAP

Publisher

International Journal of Environment and Geoinformatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3