EVALUATION OF THE TECHNICAL CONDITION OF A GAS TURBINE PLANT USING MACHINE LEARNING METHODS FROM ARTIFICIAL DATA ASSESSING THE TECHNICAL CONDITION OF A GAS TURBINE USING MACHINE LEARNING METHODS WITH ARTIFICIAL DATA

Author:

Blinov Vitalii1,Deryabin Gleb1,Pankrashin Svyatoslav1

Affiliation:

1. Ural Federal University named First President of Russia B. Yeltsin

Abstract

Continuous monitoring of the technical condition of gas turbines, defect identification, failure prevention, and optimization of operation, maintenance, and repair processes are relevant tasks for the operators of this equipment. Various machine learning methods that are already being used in the field of gas turbines can help solve these tasks. The limiting factor in this regard is the lack of real operational data. This study examines the possibility of using synthetic data for training and testing machine learning models to determine the level of technical condition of a gas turbine installation. An open dataset created by other researchers using a mathematical model of a marine gas turbine engine was selected for analysis. The research presents the accuracy values obtained by different methods of evaluating machine learning models. The random forest model demonstrated the best results. It was found that when developing machine learning-based solutions for engineering tasks, additional methods for assessing the accuracy of predictions are required. The further development of this work is associated with the development of a proprietary mathematical model of a gas turbine installation capable of considering the influence of specific defects to create datasets for analysis and further research

Publisher

BSTU named after V.G. Shukhov

Reference11 articles.

1. Roemer M. J., Kacprzynski G. J. Advanced diagnostics and prognostics for gas turbine engine risk assessment //2000 IEEE aerospace conference. proceedings. Т. 6. Big Sky: IEEE, 2000. С. 345-353., Roemer, M. J., & Kacprzynski, G. J. (2000, March). Advanced diagnostics and prognostics for gas tu bine engine risk assessment. IEEE aerospace conference. proceedings (Vol. 6, pp. 345-353). IEEE. http://dx.doi.org/10.1109/AERO.2000.877909

2. Jordan M. I., Mitchell T. M. Machine learning: Trends, perspectives, and prospects //Science. – 2015. Т. 349. №. 6245. С. 255-260., Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. https://doi.org/10.1126/science.aaa8415

3. Sun L. et al. Real-time power prediction approach for turbine using deep learning techniques //Energy. 2021. Т. 233. С. 121130., Sun, L., Liu, T., Xie, Y., Zhang, D., & Xia, X. (2021). Real-time power prediction approach for turbine using deep learning techniques. Energy, 233, 121130. http://dx.doi.org/10.1016/j.energy.2021.121130

4. Александров И. В., Дюк В. А., Фомин В. В. Использование методов машинного обучения для определения коэффициента расхода топлива газовой турбины фрегата //Морские интеллектуальные технологии. 2019. № 3-1. С. 156-160., Alexandrov, I. V., Duke, V. A., & Fomin, V. V. (2019). Using machine learning methods to determine the fuel consumption coefficient of a frigate gas turbine [Ispol'zovanie metodov mashinnogo obucheniya dlya opredeleniya koefficienta raskhoda topliva gazovoj turbiny fregata]. Morskiye intellektual'nyye tekhnologii, (3-1), 156-160. https://www.elibrary.ru/lwwupz [In Russian]

5. Coraddu A. et al. Machine learning approaches for improving condition-based maintenance of naval propulsion plants //Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 2016. Т. 230, №. 1. С. 136-153., Coraddu, A., Oneto, L., Ghio, A., Savio, S., Anguita, D., & Figari, M. (2016). Machine learning approaches for improving condition-based maintenance of naval propulsion plants. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(1), 136-153. https://doi.org/10.1177/1475090214540874

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3