INFLUENCE OF FINE-DISPERSED ADDITIVE FROM CONCRETE SCRAP ON STRUCTURE FORMATION OF PORTLANDCEMENT

Author:

Ahmed A.1,Lesovik R.2,Al'-Bo-Ali W.2,Lesovik G.2

Affiliation:

1. Belgorod State Technological University. V.G. Shukhov

2. Belgorod State Technological University named after V.G. Shukhov

Abstract

The object of the study is the effect of the introduction of a mineral additive (Ssp = 900 m2/kg) of the fraction (0.315–5 m) of the screening out of crushing concrete scrap into Portland cement for the production of various building products and structures. A fraction of concrete scrap of 0.315–5 mm is used in the work, since the X-ray phase analysis of various fractions of concrete scrap shows that these fractions have a rational content of non-hydrated particles of C3S and C2S. It is proved that the use of finely ground concrete scrap (Ssp = 900 m2/kg) as a mineral additive in Portland cement increaseINFLUENCE OF FINE-DISPERSED ADDITIVE FROM CONCRETE SCRAP ON STRUCTURE FORMATION OF PORTLANDCEMENT s the physical and mechanical properties of concrete. Comparative physical and mechanical indicators of the hardening of composite binders indicate that the most stable results with a uniform increase in strength is a composition with 5 % mineral additive, with an increase in strength from 2 to 7 days by 36 % and from 7 to 28 days by 46 %. It is found that the most rational are the compositions with 5 % and 10 % mineral additives providing an increase in the strength of the samples by 16% compared to the control composition. Due to the high dispersion, the mineral additive from concrete scrap acts as additional crystallization centers during the hydration of Portland cement, which leads to the creation of a skeleton coral-like structure, which additionally overgrows with submicroscopic crystals. With a specific surface area of 900 m2/kg, the best conditions are created for the formation of the primary frame and its further overgrowth with various crystalline calcium hydrates, which provide optimal density and strength.

Publisher

BSTU named after V.G. Shukhov

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Reference17 articles.

1. Lesovik V.S., Tolstoy A.D., Alani A.A. Realization of the similarity law in the building material science // Oriental journal of chemistry. 2019. Vol. 35. No. 3. Pp. 1067–1072., Lesovik V.S., Tolstoy A.D., Alani A.A. Realization of the similarity law in the building material science. Oriental journal of chemistry. 2019. Vol. 35. No. Pp. 1067–1072.

2. Ahmed A.A.A. Theoretical aspects of using fragments of destroyed buildings and structures of Iraq // Materials Science and Engineering. 2020. Vol. 945. 012039., Ahmed A.A.A. Theoretical aspects of using fragments of destroyed buildings and structures of Iraq. Materials Science and Engineering. 2020. Vol. 945. 012039.

3. Lesovik, R.V., Klyuev, S.V., Klyuev, A.V., Tolbatov, A.A., Durachenko, A.V.: The development of textile fine-grained fiber concrete using technogenic raw materials // Research Journal of Applied Sciences.2015. Vol. 10. Pp. 696–701., Lesovik, R.V., Klyuev, S.V., Klyuev, A.V., Tolbatov, A.A., Durachenko, A.V.: The development of textile fine-grained fiber concrete using technogenic raw materials. Research Journal of Applied Sciences.2015. Vol. 10. Pp. 696–701.

4. Муртазаев, С-А.Ю., Исмаилова З.Х. Использование местных техногенных отходов в мелкозернистых // Строительные материалы. 2008. №.3. С. 57–58., Murtazaev, St. A.Yu., Ismailova Z.Kh. The use of local industrial waste in fine-grained [Ispol'zovanie mestnyh tekhnogennyh othodov v melko-zernistyh]. Stroitel'nye materialy. 2008. No. 3. Pp. 57–58.

5. Carlo P., Flora F., Christian M. Recycled materials in concrete // Developments in the Formulation and Reinforcement of Concrete (Second Edition). 2019. Vol. 31. No.8. Pp. 19–54., Carlo P., Flora F., Christian M. Recycled materials in concrete. Developments in the Formulation and Reinforcement of Concrete (Second Edition). 2019. Vol.31. No.8. Pp. 19–54.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3