FEATURES OF THE FORMATION OF THE MICROSTRUCTURE OF GRANULAR AGGREGATES ON DIFFERENT BINDING COMPOSITIONS

Author:

Zagorodnyuk L.1,Ryzhikh V.1,Sumskoy D.1,Sinebok D.1

Affiliation:

1. Belgorod State Technological University named after V.G. Shukhov

Abstract

This work includes a study of the microstructure of granular aggregates prepared on various binding compositions. The presented work includes three parts devoted to the analysis of the microstructures of granular aggregates taking into account the change in the percentage of the mineral filler in binding compositions. The article deals with the main aspects of the formation of the structure of granular aggregates during the hydration of Portland cement (PC 500-D0-N) and a binder composition (PC 500-D0-N + 10 % quartz sand) prepared in a vortex jet mill. The main regularities of the influence and dispersion of quartz mineral filler (fractions ≤0.16; ≤0.315; ≤0.63 mm) on structure formation during the hydration of binding components differing in the composition and particle dispersion are revealed. The paper analyzes physical and mechanical tests of the most promising samples with a study of their microstructure features. The study of the sample microstructures reveals the general regularities of the growth of crystalline phases of different densities. It is established that the introduction of 1 0% mineral fine-dispersed filler, in the form of quartz sand, contributes to the formation of sub-microcrystalline hydrate phases, which are centers of hydration, additionally binding individual grains of granular aggregates and compacting the structure of the overall system. In all samples, the formation of a block-rhythmic structure is observed, with the presence of individual block-aggregates. There is an overgrowth of microscopic pores with small crystalline neoplasms of calcium hydrosilicates. It is revealed that the structure of granular aggregates prepared on the basis of binder composition No. 1 (BK-1) has higher density than on Portland cement PC 500-D0-N.

Publisher

BSTU named after V.G. Shukhov

Subject

Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Reference18 articles.

1. Aljasimee D.H., Dhaheer M.S.A. Fresh and hardened properties of self-compacting concrete incorporating PVA-treated recycled aggregate // Materials Science and Engineering. 2020. Vol. 671. 012103., Aljasimee D.H., Dhaheer M.S.A. Fresh and hardened properties of self-compacting concrete incorporating PVA-treated recycled aggregate. Materials Science and Engineering. 2020. Vol. 671. 012103.

2. Cabrera-Covarrubias F., Gomez-Soberon J.M., Almaral-Sanchez J.L., Arredondo-Rea S.P., Gomez-Soberon M.C., Corral-Higuera R. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain // Materials. 2016. Vol. 9, № 12. 1029., Cabrera-Covarrubias F., Gomez-Soberon J.M., Almaral-Sanchez J.L., Arredondo-Rea S.P., Gomez-Soberon M.C., Corral-Higuera R. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain. Materials. 2016. Vol. 9, No. 12. 1029.

3. Palovčík J., Opravil T., Novotný R., Másilko J. Application of brick grind dust in systems based on Portland cement // IOP Conf. Ser.: Mater. Sci. Eng. 2018. Vol. 379. 012002., Palovčík J., Opravil T., Novotný R., Másilko J. Application of brick grind dust in systems based on Portland cement. IOP Conf. Ser.: Mater. Sci. Eng. 2018. Vol. 379. 012002.

4. Shapovalov N.A., Shchekina A. Yu., Gorodov A.I. Modified binders on the basis of flotation tailings // IOP Conf. Ser.: Mater. Sci. Eng. 2018. Vol. 327. 032050., Shapovalov N.A., Shchekina A. Yu., Gorodov A.I. Modified binders on the basis of flotation tailings. IOP Conf. Ser.: Mater. Sci. Eng. 2018. Vol. 327. 032050.

5. Tchamdjou W.H.J., Grigoletto S., Michel F., Courard L., Abidi M.L., Cherradi T. An investigation on the use of coarse volcanic scoria as sand in Portland cement mortar // Case Studies in Construction Materials. 2017. Vol. 7. Pp. 191–206., Tchamdjou W.H.J., Grigoletto S., Michel F., Courard L., Abidi M.L., Cherradi T. An investigation on the use of coarse volcanic scoria as sand in Portland cement mortar. Case Studies in Construction Materials. 2017. Vol. 7. Pp. 191–206.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3