Affiliation:
1. Far Eastern Federal University
Abstract
Solar energy is one of the sources of renewable energy. However, during the cold season in Russia, the use of solar energy is difficult due to low outdoor air temperatures. The purpose of this article is to analyze the possibility of energy saving when using solar energy for the heating system of an individual residential building in Vladivostok. The latitude of the city is 43 °, but the estimated temperature for the design of heating is -22 ° C. This greatly complicates the use of solar heat. The possibility of accumulation of low-potential heat in a specially equipped outhouse (greenhouse) for conversion by a thermal air-water pump is analyzed in order to use it for heating needs in the future. Two constructions are considered as the finishing material of the extension: a two-layer polycarbonate with an air layer and an energy-saving double-glazed window. The calculation shows that in the coldest month is January, the potential of solar thermal energy is 14 %–37 % of the required heat demand, depending on the material used in the construction of the extension. In March and April, excess heat is generated. It can be used for hot water supply needs. Thus, for an individual residential building, the use of solar heat accumulated in a greenhouse extension is relevant as an additional source of heat for the heating system.
Publisher
BSTU named after V.G. Shukhov
Subject
Psychiatry and Mental health,Neuropsychology and Physiological Psychology
Reference16 articles.
1. Hussain J., Khan A., Zhou K. The impact of natural resource depletion on energy use and CO2 emission in Belt & Road Initiative countries: A cross-country analysis // Energy. 2020. Vol. 199. 117409, Hussain J., Khan A., Zhou K. The impact of natural resource depletion on energy use and CO2 emission in Belt & Road Initiative countries: A cross-country analysis. Energy. 2020. Vol. 199. 117409
2. Фрид С.Е., Мордынский А.В., Арсатов А.В. Солнечные водонагреватели аккумуляционного типа // Теплоэнергетика. 2012. Том 59. № 11. С. 874–880. doi: 10.1016/j.energy.2020.117409., Frid S.E., Mordynskii A.V., Arsatov A.V. Integrated solar water heaters [Colnechnye vodonagrevateli akkumulyacionnogo tipa]. Thermal engineering. 2012. Vol. 59. No 11. Pp. 874–880. doi: 10.1016/j.energy.2020.117409. (rus)
3. Attia S. Evolution of Definitions and Approaches // Net Zero Energy Buildings (NZEB). Butterworth-Heinemann, 2018. 400 p., Attia S. Evolution of Definitions and Approaches. Net Zero Energy Buildings (NZEB). Imprint: Butterworth-Heinemann, 2018. 400 p.
4. Ламмаер Ф. Типовые проекты: энергосберегающие и пассивные дома. Pro Passivhaus, 2017. 42 с., Lammaier F. Typical projects: energy-saving and passive houses [Tipovye proekty: energosberegayushchie i passivnye doma]. Pro Passivhaus, 2017. 42 p. (rus)
5. Лисина О.В. Оценка потенциала инновационной концепции энергоэффективного экодевелопмента: новинки инженерного оборудования и технологии проектирования // Управление устойчивым развитием. 2016. № 2. С. 66–72., Lisina O.V. Assessment of the potential of the innovative concept of energy-efficient eco-development: new items of engineering equipment and design technologies [Ocenka potenciala innovacionnoj koncepcii energoeffektivnogo ekodevelopmenta: novinki inzhenernogo oborudovaniya i tekhnologii proektirovaniya]. Management of sustainable development. 2016. No. 2. Pp. 66–72. (rus)