Affiliation:
1. Belgorod State Technological University named after V.G. Shukhov
Abstract
The study of the fractal dimension of pores in cellular concrete and aerated concrete blocks significantly influences the understanding of the porous structure of materials. One of the key methods for estimating this dimension is cell counting. The fractal dimension of pores indicates the degree of their dense distribution and is closely related to the physical properties of the material, such as heat and sound insulation. The results of the study showed that an increase in the fractal dimension of pores is associated with an increase in the number of smallest pores and the complication of their spatial arrangement. At the same time, the use of the cell counting method allows to estimate accurately this fractal dimension, based on the number of cells containing pores at different scales. One of the significant aspects is the correlation of the fractal dimension of pores with their area and size. This makes it possible to evaluate the roughness of pores and their distribution in the material, as well as to understand how an increase in pore size leads to a decrease in their number and thickening of the walls between them. The fractal dimension of pores makes it possible to characterize the structure of the pore space, which is important for understanding the microstructure of the material. Manipulating the microstructure of cellular concrete using fractal dimension analysis can improve its thermal insulation, strength and sound insulation, opening new possibilities for creating more efficient building materials
Publisher
BSTU named after V.G. Shukhov
Reference17 articles.
1. Сулейманова Л.А. Управление процессом формирования пористой структуры ячеистых бетонов // Вестник БГТУ им. В.Г. Шухова. 2016. № 2. С. 69–76., Suleymanova L.A. Control of the process of formation of the porous structure of cellular concrete [Upravlenie processom formirovaniya poristoj struktury yacheistyh betonov]. Bulletin of BSTU named after. V.G. Shukhov. 2016. No. 2. Pp. 69–76. (rus)
2. Сулейманова Л.А., Жерновский И.В., Шамшуров А.В. Специальное композиционное вяжущее для газобетонов неавтоклавного твердения // Вестник БГТУ им. В.Г. Шухова. 2012. № 1. С. 39–45., Suleymanova L.A., Zhernovsky I.V., Shamshurov A.V. Special composite binder for non-autoclaved aerated concrete [Special'noe kompozicionnoe vyazhushchee dlya gazobetonov neavtoklavnogo tverdeniya]. Bulletin of BSTU named after. V.G. Shukhov. 2012. No. 1. Pp. 39–45. (rus)
3. Давидюк А.А., Фискинд Е.С., Гусарь О.А., Балакирева В.В. Преимущества в производстве и применении блоков из ячеистого бетона // Строительные материалы. 2018. № 12. С. 41–43. DOI: 10.31659/0585-430X-2018-766-12-41-43, Davidyuk A.A., Fiskind E.S., Gusar O.A., Balakireva V.V. Advantages in the production and use of cellular concrete blocks [Preimushchestva v proizvodstve i primenenii blokov iz yacheistogo betona]. Construction materials. 2018. No. 12. P. 41–43. DOI: 10.31659/0585-430X-2018-766-12-41-43 (rus)
4. Вылегжанин В.П., Пинскер В.А., Петрова Т.М. Особенности пористой структуры ячеистых бетонов и ее влияние на теплопроводность // Строительные материалы. 2021. № 8. С. 67–72. DOI: 10.31659/0585-430X-2021-794-8-67-71, Vylegzhanin V.P., Pinsker V.A., Petrova T.M. Features of the porous structure of cellular concrete and its influence on thermal conductivity [Osobennosti poristoj struktury yacheistyh betonov i ee vliyanie na teploprovodnost']. Construction materials. 2021. No. 8. Pp. 67–72. DOI: 10.31659/0585-430X-2021-794-8-67-71 (rus)
5. Львова Д.В., Кристин А.П. Особенности использования ячеистого бетона // Аллея науки. 2018. Т. 4, № 6(22). С. 256–259., Lvova D.V., Kristin A.P. Features of the use of cellular concrete [Osobennosti ispol'zovaniya yacheistogo betona]. Alley of Science. 2018. T. 4, No. 6(22). P. 256–259. (rus)