Affiliation:
1. Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Abstract
For isotropic swimming particles driven by self-diffusiophoresis at zero Reynolds number (where particle velocity responds instantaneously to applied force), the diffusive timescale of emitted solute can produce an emergent quasi-inertial behavior. These particles can orbit in a central potential and reorient under second-order dynamics, not the first-order dynamics of classical zero-Reynolds motion. They are described by a simple effective model that embeds their history-dependent behavior as an effective inertia, this being the most primitive expression of memory. The system can be parameterized with dynamic quantities such as particle size and swimming speed, without detailed knowledge of the diffusiophoretic mechanism.
Published by the American Physical Society
2024
Funder
National Science Foundation
Publisher
American Physical Society (APS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献