Speed-accuracy trade-offs in best-of- n collective decision making through heterogeneous mean-field modeling

Author:

Reina Andreagiovanni1ORCID,Njougouo Thierry2ORCID,Tuci Elio2ORCID,Carletti Timoteo3ORCID

Affiliation:

1. Institute for Interdisciplinary Studies on Artificial Intelligence (IRIDIA), Université Libre de Bruxelles, B1050 Brussels, Belgium; Centre for the Advanced Study of Collective Behaviour, Universität Konstanz, 78464 Konstanz, Germany; and Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany

2. Faculty of Computer Science and Namur Institute for Complex Systems, naXys Université de Namur, Rue Grandgagnage 21, B5000 Namur, Belgium

3. Department of Mathematics and Namur Institute for Complex Systems, naXys Université de Namur, Rue Grafé 2, B5000 Namur, Belgium

Abstract

To succeed in their objectives, groups of individuals must be able to make quick and accurate collective decisions on the best option among a set of alternatives with different qualities. Group-living animals aim to do that all the time. Plants and fungi are thought to do so too. Swarms of autonomous robots can also be programed to make best-of-n decisions for solving tasks collaboratively. Ultimately, humans critically need it and so many times they should be better at it! Thanks to their mathematical tractability, simple models like the voter model and the local majority rule model have proven useful to describe the dynamics of such collective decision-making processes. To reach a consensus, individuals change their opinion by interacting with neighbors in their social network. At least among animals and robots, options with a better quality are exchanged more often and therefore spread faster than lower-quality options, leading to the collective selection of the best option. With our work, we study the impact of individuals making errors in pooling others' opinions caused, for example, by the need to reduce the cognitive load. Our analysis is grounded on the introduction of a model that generalizes the two existing models (local majority rule and voter model), showing a speed-accuracy trade-off regulated by the cognitive effort of individuals. We also investigate the impact of the interaction network topology on the collective dynamics. To do so, we extend our model and, by using the heterogeneous mean-field approach, we show the presence of another speed-accuracy trade-off regulated by network connectivity. An interesting result is that reduced network connectivity corresponds to an increase in collective decision accuracy. ©2024 American Physical Society 2024 American Physical Society

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3