Impact of random nanoscale roughness on gas-scattering dynamics

Author:

Chen Yichong1ORCID,Gibelli Livio1ORCID,Borg Matthew K.1ORCID

Affiliation:

1. University of Edinburgh EH9 3FB

Abstract

The impact of nanoscale wall roughness on rarefied gas transport is widely acknowledged, yet the associated scattering dynamics largely remain elusive. In this paper, we develop a scattering kernel for surfaces having nanoscale roughness that distinctly characterizes the two major types of interactions between gas molecules and rough surfaces. Namely these are (a) the weak perturbations arising from the thermal motion of wall atoms, essentially gas-phonon collisions, which are captured by the well-established Cercignani-Lampis model, and (b) the hard collisions owing to the irregularities of the rough, static potential energy surface, which are generally described by the fully diffuse model. Drawing an analogy between wave-surface and gas-surface scattering, a pseudo Debye-Waller factor is incorporated into the modeling as a weighting coefficient to allow the transition between smooth and rough surface conditions. The proposed scattering kernel is validated through high-fidelity molecular dynamics simulations that are performed for systems with varying roughness, temperature, and gas-surface combinations. The results indicate that the model well captures the scattering dynamics of gas molecular beams impinging on surfaces at different velocities, specifically for the accommodation coefficients and reflection patterns. Additionally, in flow and heat transport cases, it accurately predicts macroscopic quantities such as velocity slip and temperature jumps across the range of tested conditions. Published by the American Physical Society 2024

Funder

Engineering and Physical Sciences Research Council

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3