Exploring light dark matter with the Migdal effect in hydrogen-doped liquid xenon

Author:

Bell Nicole F.1ORCID,Cox Peter1ORCID,Dolan Matthew J.1ORCID,Newstead Jayden L.1,Ritter Alexander C.1ORCID

Affiliation:

1. ARC Centre of Excellence for Dark Matter Particle Physics, School of Physics, The University of Melbourne, Victoria 3010, Australia

Abstract

An ongoing challenge in dark matter direct detection is to improve the sensitivity to light dark matter in the MeV–GeV mass range. One proposal is to dope a liquid noble-element direct-detection experiment with a lighter element such as hydrogen. This has the advantage of enabling larger recoil energies compared to scattering on a heavy target, while leveraging existing detector technologies. Direct-detection experiments can also extend their reach to lower masses by exploiting the Migdal effect, where a nuclear recoil leads to electronic ionization or excitation. In this work, we combine these ideas to study the sensitivity of a hydrogen-doped LZ experiment (HydroX) and a future large-scale experiment such as XLZD. We find that HydroX could have sensitivity to dark matter masses below 10 MeV for both spin-independent and spin-dependent scattering, with XLZD extending that reach to lower cross sections. Notably, this technique substantially enhances the sensitivity of direct detection to spin-dependent proton scattering, well beyond the reach of any current experiments. Published by the American Physical Society 2024

Funder

Australian Research Council

ARC Centre of Excellence for Dark Matter Particle Physics

Australian Government Research Training Program Scholarship

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraining dark matter-proton scattering from molecular cloud ionization;Physical Review D;2024-08-06

2. A neutrino floor for the Migdal effect;Journal of High Energy Physics;2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3