Classical Liouville action and uniformization of orbifold Riemann surfaces

Author:

Taghavi Behrad1,Naseh Ali1,Allameh Kuroush2

Affiliation:

1. Institute for Research in Fundamental Sciences (IPM)

2. UC Santa Cruz

Abstract

We study the classical Liouville field theory on Riemann surfaces of genus g>1 in the presence of vertex operators associated with branch points of orders mi>1. In order to do so, we will consider the generalized Schottky space Sg,n(m) obtained as a holomorphic fibration over the Schottky space Sg of the (compactified) underlying Riemann surface. The fibers of Sg,n(m)Sg correspond to configuration spaces of n orbifold points of orders m=(m1,,mn). Drawing on the previous work of Park [] as well as Takhtajan and Zograf [; L. A. Takhtajan and P. Zograf], we define Hermitian metrics hi for tautological line bundles i over Sg,n(m). These metrics are expressed in terms of the first coefficient of the expansion of covering map J near each singular point on the Schottky domain. Additionally, we define the regularized classical Liouville action Sm using Schottky global coordinates on Riemann orbisurfaces with genus g>1. We demonstrate that exp[Sm/π] serves as a Hermitian metric in the holomorphic Q-line bundle =i=1ni(11/mi2) over Sg,n(m). Furthermore, we explicitly compute the first and second variations of the smooth real-valued function 𝒮m=Smπi=1n(mi1mi)loghi on the Schottky deformation space Sg,n(m). We establish two key results: (i) 𝒮m generates a combination of accessory and auxiliary parameters, and (ii) 𝒮m acts as a Kähler potential for a specific combination of Weil-Petersson and Takhtajan-Zograf metrics that appear in the local index theorem for orbifold Riemann surfaces [Takhtajan and Zograf, ]. The obtained results can then be interpreted in terms of the complex geometry of the Hodge line bundle equipped with Quillen’s metric over the moduli space Mg,n(m) of Riemann orbisurfaces and the tree-level approximation of conformal Ward identities associated with quantum Liouville theory. Published by the American Physical Society 2024

Funder

Iran National Science Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3