Asymmetric self-interacting dark matter with a canonical seesaw model

Author:

Borah Debasish1ORCID,Mahapatra Satyabrata2ORCID,Paul Partha Kumar3ORCID,Sahu Narendra3ORCID,Shukla Prashant45ORCID

Affiliation:

1. Indian Institute of Technology Guwahati

2. Sungkyunkwan University

3. Indian Institute of Technology Hyderabad

4. Bhabha Atomic Research Centre

5. Homi Bhabha National Institute

Abstract

We study the possibility of generating dark matter (DM) and baryon asymmetry of the Universe (BAU) simultaneously in an asymmetric DM framework, which also alleviates the small-scale structure issues of cold DM. While the thermal relic of such self-interacting DM remains underabundant due to efficient annihilation into light mediators, a nonzero asymmetry in the dark sector can lead to the survival of the required DM in the Universe. The existence of a light mediator leads to the required self-interactions of DM at small scales while keeping DM properties similar to cold DM at large scales. It also ensures that the symmetric DM component annihilates away, leaving the asymmetric part in the spirit of cogenesis. The particle physics implementation is done in canonical seesaw models of light neutrino mass, connecting it to the origin of DM and BAU. In particular, we consider type-I and type-III seesaw origin of neutrino mass for simplicity and minimality of the field content. We show that the desired self-interactions and relic of DM together with BAU while satisfying relevant constraints lead to strict limits on DM mass O(GeV)MDM460GeV. In spite of being a high-scale seesaw, the models remain verifiable in different experiments, including direct and indirect DM searches as well as colliders. Published by the American Physical Society 2024

Funder

National Research Foundation of Korea

Science and Engineering Research Board

Ministry of Education, India

Department of Atomic Energy, Government of India

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3