Wake forces in a background of quadratically coupled mediators

Author:

Van Tilburg Ken12ORCID

Affiliation:

1. New York University

2. Flatiron Institute

Abstract

Two particles can exert forces on each other when embedded in a sea of weakly coupled particles. These “wake forces” occur whenever the source and target particles have quadratic interactions with the mediating particles; they are proportional to the ambient energy density and typically have a range of order the characteristic de Broglie wavelength of the background. The effect can be understood as source particles causing a disturbance in the background waves—a wake—which subsequently interacts with the target particles. Wake forces can be mediated by bosons or fermions, can have spin dependence, may be attractive or repulsive, and have a generally anisotropic spatial profile and range that depends on the phase-space distribution of the ambient particles. In this work, I investigate the application of wake forces to dark matter searches, recast existing limits on short-range forces into leading constraints on dark matter with quadratic couplings, and sketch out potential experimental modifications to optimize sensitivity. Wake forces occur in the Standard Model: the presence of the cosmic neutrino background induces a millimeter-range force about 22 orders of magnitude weaker than gravity. Wake forces may also be relevant in condensed-matter and atomic physics. Published by the American Physical Society 2024

Funder

National Science Foundation

Simons Foundation

University of Washington

U.S. Department of Energy

Aspen Center for Physics

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tunneling away the relic neutrino asymmetry;Physical Review D;2024-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3