Collisional energy loss of a heavy quark in a semiquark-gluon plasma

Author:

Du Qianqian12,Du Mudong1,Guo Yun12ORCID

Affiliation:

1. Guangxi Normal University

2. Guangxi Key Laboratory of Nuclear Physics and Technology

Abstract

By utilizing a background field effective theory, we compute the collisional energy loss of a heavy quark moving through a semiquark-gluon plasma characterized by nontrivial holonomy for Polyakov loops. We consider the elastic scatterings between the incident heavy quark and the thermal partons with both hard and soft momentum transfers. As compared to the energy loss obtained from the perturbation theory, the hard processes get modified through the thermal distribution functions that depend on the background field, while the proper treatment of the soft processes strongly relies on the use of the hard-thermal-loop resummed gluon propagator derived from the background field effective theory. Our results show that the heavy quark energy loss is significantly suppressed in the semiquark-gluon plasma due to a background field that is self-consistently generated in the effective theory. On the other hand, the suppression has a strong dependence on the temperature of the plasma, which becomes negligible above 2–3 times the critical temperature. For a realistic coupling constant, ignoring a relatively weak dependence on the heavy quark velocity, the suppression on the collisional energy loss can be approximated by an overall factor determined solely by the background field. This simple conclusion is expected to be useful for phenomenological applications in the heavy flavor physics. Published by the American Physical Society 2024

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Central Government Guidance Funds

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3