Exploring Lee-Yang and Fisher zeros in the 2D Ising model through multipoint Padé approximants

Author:

Singh Simran1ORCID,Cipressi Massimo2ORCID,Di Renzo Francesco3

Affiliation:

1. Universität Bielefeld, Fakultät für Physik, D-33615 Bielefeld, Germany

2. Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, I-43100 Parma, Italy

3. Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma and INFN, Gruppo Collegato di Parma I-43100 Parma, Italy

Abstract

We present a numerical calculation of the Lee-Yang and Fisher zeros of the 2D Ising model using multipoint Padé approximants. We perform simulations for the 2D Ising model with ferromagnetic couplings both in the absence and in the presence of a magnetic field using a cluster spin-flip algorithm. We show that it is possible to extract genuine signature of Lee-Yang and Fisher zeros of the theory through the poles of magnetization and specific heat, using the multipoint Padé method. We extract the poles of magnetization using Padé approximants and compare their scaling with known results. We verify the circle theorem associated to the well known behavior of Lee-Yang zeros. We present our finite volume scaling analysis of the zeros done at T=Tc for a few lattice sizes, extracting to a good precision the (combination of) critical exponents βδ. The computation at the critical temperature is performed after the latter has been determined via the study of Fisher zeros, thus extracting both βc and the critical exponent ν. Results already exist for extracting the critical exponents for the Ising model in two and three dimensions making use of Fisher and Lee-Yang zeros. In this work, multipoint Padé is shown to be competitive with this respect and thus a powerful tool to study phase transitions. Published by the American Physical Society 2024

Funder

European Commission

HORIZON EUROPE Marie Sklodowska-Curie Actions

Deutsche Forschungsgemeinschaft

Università degli Studi di Parma

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3