Responses of quark-antiquark interactions and heavy quark dynamics to magnetic fields

Author:

Zhang He-Xia1ORCID,Wang Enke1

Affiliation:

1. Key Laboratory of Atomic and Subatomic Structure and Quantum Control (MOE), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangdong Provincial Key Laboratory of Nuclear Science, Southern Nuclear Science Computing Center, South China Normal University, Guangzhou 510006, China

Abstract

We investigate the impact of the magnetic field generated by colliding nuclei on heavy quark-antiquark interactions and heavy quark dynamics in the quark-gluon plasma (QGP). By means of the hard-thermal-loop resummation technique combined with dimension-two gluon condensates, the static heavy quark potential and heavy quark momentum diffusion coefficient, which incorporate both perturbative and nonperturbative interactions between heavy quarks and the QGP medium, are computed beyond the lowest Landau level approximation. We find that the imaginary part of the heavy quark potential in the magnetic field exhibits significant anisotropy. Specifically, the absolute value of the imaginary part is larger when the quark-antiquark separation is aligned perpendicular to the magnetic field direction, compared to when it is aligned parallel to the magnetic field direction. The heavy quark momentum diffusion coefficient in the magnetized QGP medium also becomes anisotropic. As the temperature rises, the influence of higher Landau levels becomes increasingly significant, resulting in a decrease in the anisotropy ratio of the heavy quark momentum diffusion coefficient to values even below 1. At sufficiently high temperatures, this ratio ultimately approaches 1. The nonperturbative interactions are indispensable for understanding heavy quark dynamics in the low-temperature region. We also study the response of viscous quark matter to the magnetic field and explore its implications for heavy quark potential, thermal decay widths of quarkonium states, as well as heavy quark momentum diffusion coefficient. Published by the American Physical Society 2024

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3