Optimized search for a binary black hole merger population in LIGO-Virgo O3 data

Author:

Kumar Praveen1ORCID,Dent Thomas1ORCID

Affiliation:

1. Universidade de Santiago de Compostela

Abstract

Maximizing the number of detections in matched filter searches for compact binary coalescence (CBC) gravitational wave signals requires a model of the source population distribution. In previous searches using the framework, sensitivity to the population of binary black hole (BBH) mergers was improved by restricting the range of filter template mass ratios and use of a simple one-dimensional population model. However, this approach does not make use of our full knowledge of the population and cannot be extended to a full parameter space search. Here, we introduce a new ranking method, based on kernel density estimation with adaptive bandwidth, to accurately model the probability distributions of binary source parameters over a template bank, both for signals and for noise events. We demonstrate this ranking method by conducting a search over LIGO-Virgo O3 data for BBHs with unrestricted mass ratio, using a signal model derived from previous significant detected events. We achieve over 10% increase in sensitive volume for a simple power-law simulated signal population, compared to the previous BBH search. Correspondingly, with the new ranking, eight additional candidate events above an inverse false alarm rate threshold 0.5 yr are identified. Published by the American Physical Society 2024

Funder

European Regional Development Fund

Spanish Research State Agency

Ministerio de Ciencia e Innovación

National Science Foundation

Xunta de Galicia

Galician Supercomputing Center

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3