Applications of flow models to the generation of correlated lattice QCD ensembles

Author:

Abbott Ryan12,Botev Aleksandar3,Boyda Denis12ORCID,Hackett Daniel C.412,Kanwar Gurtej5ORCID,Racanière Sébastien3,Rezende Danilo J.3,Romero-López Fernando12ORCID,Shanahan Phiala E.12,Urban Julian M.12

Affiliation:

1. Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2. The NSF AI Institute for Artificial Intelligence and Fundamental Interactions

3. Google DeepMind, London, UK

4. Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A.

5. Albert Einstein Center, Institute for Theoretical Physics, University of Bern, 3012 Bern, Switzerland

Abstract

Machine-learned normalizing flows can be used in the context of lattice quantum field theory to generate statistically correlated ensembles of lattice gauge fields at different action parameters. This work demonstrates how these correlations can be exploited for variance reduction in the computation of observables. Three different proof-of-concept applications are demonstrated using a novel residual flow architecture: continuum limits of gauge theories, the mass dependence of QCD observables, and hadronic matrix elements based on the Feynman–Hellmann approach. In all three cases, it is shown that statistical uncertainties are significantly reduced when machine-learned flows are incorporated as compared with the same calculations performed with uncorrelated ensembles or direct reweighting. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

Nuclear Physics

Ministerio de Economía y Competitividad

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Fermilab

National Science Foundation

Massachusetts Institute of Technology

Lincoln Laboratory, Massachusetts Institute of Technology

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3