Abstract
Understanding the mechanisms governing the structure and dynamics of flexible polymers like chromosomes, especially the signatures of motor-driven active processes, is of great interest in genome biology. We study chromosomes as a coarse-grained polymer model where microscopic motor activity is captured via an additive temporally persistent noise. The active steady state is characterized by two parameters: active force, controlling the persistent-noise amplitude, and correlation time, the decay time of active noise. We find that activity drives correlated motion over long distances and a regime of dynamic compaction into a globally collapsed entangled globule. Diminished topological constraints destabilize the entangled globule, and the active segments trapped in the globule move toward the periphery, resulting in an enriched active monomer density near the periphery. We also show that heterogeneous activity leads to the segregation of the highly dynamic species from the less dynamic one, suggesting a role of activity in chromosome compartmental segregation. Adding activity to experimental-data-derived structures, we find active loci may mechanically perturb and switch compartments established via epigenetics-driven passive self-association. The key distinguishing signatures of activity are enhanced apparent diffusivity, exploration of all the dynamic regimes (subdiffusion, effective diffusion, and superdiffusion) at various lag times, and a broadened distribution of observables like the dynamic exponents.
Published by the American Physical Society
2024
Funder
National Science Foundation
Welch Foundation
Advanced Micro Devices
Israel Science Foundation
Publisher
American Physical Society (APS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献