Entangling Interactions Between Artificial Atoms Mediated by a Multimode Left-Handed Superconducting Ring Resonator

Author:

McBroom-Carroll T.1,Schlabes A.234,Xu X.24,Ku J.1,Cole B.1ORCID,Indrajeet S.1,LaHaye M. D.15,Ansari M. H.234,Plourde B. L. T.1ORCID

Affiliation:

1. Department of Physics, Syracuse University, Syracuse, New York 13244-1130, USA

2. Peter Grünberg Institute (PGI-2), Forschungszentrum Jülich, Jülich 52428, Germany

3. Institute for Quantum Information, RWTH Aachen University, Aachen D-52056, Germany

4. Jülich-Aachen Research Alliance (JARA), Fundamentals of Future Information Technologies, Germany

5. Air Force Research Laboratory, Information Directorate, Rome, New York 13441, USA

Abstract

Superconducting metamaterial transmission lines implemented with lumped circuit elements can exhibit left-handed dispersion, where the group and phase velocity have opposite sign, in a frequency range relevant for superconducting artificial atoms. Forming such a metamaterial transmission line into a ring and coupling it to qubits at different points around the ring results in a multimode bus resonator with a compact footprint. Using flux-tunable qubits, we characterize and theoretically model the variation in the coupling strength between the two qubits and each of the ring-resonator modes. Although the qubits have negligible direct coupling between them, their interactions with the multimode ring resonator result in both a transverse exchange coupling and a higher-order ZZ interaction between the qubits. As we vary the detuning between the qubits and their frequency relative to the ring-resonator modes, we observe significant variations in both of these interqubit interactions, including zero crossings and changes of sign. The ability to modulate interaction terms such as the ZZ scale between zero and large values for small changes in qubit frequency provides a promising pathway for implementing entangling gates in a system capable of hosting many qubits. Published by the American Physical Society 2024

Funder

Air Force Office of Scientific Research

Air Force Research Laboratory

National Science Foundation

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3