Qubit-Efficient Randomized Quantum Algorithms for Linear Algebra

Author:

Wang Samson1ORCID,McArdle Sam23,Berta Mario45ORCID

Affiliation:

1. Department of Physics, Imperial College London

2. AWS Center for Quantum Computing

3. Institute for Quantum Information and Matter, Caltech, Pasadena, CA 91125

4. Department of Computing, Imperial College London

5. Institute for Quantum Information, RWTH Aachen University

Abstract

We propose a class of randomized quantum algorithms for the task of sampling from matrix functions, without the use of quantum block encodings or any other coherent oracle access to the matrix elements. As such, our use of qubits is purely algorithmic and no additional qubits are required for quantum data structures. Our algorithms start from a classical data structure in which the matrix of interest is specified in the Pauli basis. For N×N Hermitian matrices, the space cost is log(N)+1 qubits and, depending on the structure of the matrices, the gate complexity can be comparable to state-of-the-art methods that use quantum data structures of up to size O(N2), when considering equivalent end-to-end problems. Within our framework, we present a quantum linear system solver that allows one to sample properties of the solution vector, as well as algorithms for sampling properties of ground states and Gibbs states of Hamiltonians. As a concrete application, we combine these subroutines to present a scheme for calculating Green’s functions of quantum many-body systems. Published by the American Physical Society 2024

Funder

Engineering and Physical Sciences Research Council

Publisher

American Physical Society (APS)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3