Generalized Quantum Signal Processing

Author:

Motlagh Danial,Wiebe Nathan

Abstract

Quantum signal processing (QSP) and quantum singular value transformation (QSVT) currently stand as the most efficient techniques for implementing functions of block-encoded matrices, a central task that lies at the heart of most prominent quantum algorithms. However, current QSP approaches face several challenges, such as the restrictions imposed on the family of achievable polynomials and the difficulty of calculating the required phase angles for specific transformations. In this paper, we present a generalized quantum signal processing (GQSP) approach, employing general SU(2) rotations as our signal-processing operators, rather than relying solely on rotations in a single basis. Our approach lifts all practical restrictions on the family of achievable transformations, with the sole remaining condition being that |P|1, a restriction necessary due to the unitary nature of quantum computation. Furthermore, GQSP provides a straightforward recursive formula for determining the rotation angles needed to construct the polynomials in cases where P and Q are known. In cases where only P is known, we provide an efficient optimization algorithm capable of identifying in under a minute of GPU time, a corresponding Q for polynomials of degree on the order of 107. We further illustrate GQSP simplifies QSP-based strategies for Hamiltonian simulation, offer an optimal solution to the ϵ-approximate fractional query problem that requires O((1/δ)+log(1/ϵ)) queries to perform where O(1/δ) is a proved lower bound, and introduces novel approaches for implementing bosonic operators. Moreover, we propose a novel framework for the implementation of normal matrices, demonstrating its applicability through synthesis of diagonal matrices, as well as the development of a new algorithm for convolution through synthesis of circulant matrices using only O(dlogN+log2N) 1 and 2-qubit gates for a filter of lengths d. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage

Publisher

American Physical Society (APS)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3