Native Two-Qubit Gates in Fixed-Coupling, Fixed-Frequency Transmons Beyond Cross-Resonance Interaction

Author:

Wei Ken Xuan1,Lauer Isaac1,Pritchett Emily1,Shanks William1,McKay David C.1,Javadi-Abhari Ali1

Affiliation:

1. IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA

Abstract

Fixed-frequency superconducting qubits demonstrate remarkable success as platforms for stable and scalable quantum computing. Cross-resonance gates have been the workhorse of fixed-coupling, fixed-frequency superconducting processors, leveraging the entanglement generated by driving one qubit resonantly with a neighbor’s frequency to achieve high-fidelity, universal controlled- () gates. Here, we use on-resonant and off-resonant microwave drives to go beyond cross-resonance, realizing natively interesting two-qubit gates that are not equivalent to gates. In particular, we implement and benchmark native i, , iSWAP, and b gates; in fact, any SU(4) unitary can be achieved using these techniques. Furthermore, we apply these techniques for an efficient construction of the B gate: a perfect entangler from which any two-qubit gate can be reached in only two applications. We show that these native two-qubit gates are better than their counterparts compiled from cross-resonance gates. We elucidate the resonance conditions required to drive each two-qubit gate and provide a novel frame tracking technique to implement them in Qiskit. Published by the American Physical Society 2024

Funder

U.S. Department of Energy

Office of Science

National Quantum Information Science Research Centers

Co-design Center for Quantum Advantage

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3