Fault-Tolerant Code-Switching Protocols for Near-Term Quantum Processors

Author:

Butt Friederike12ORCID,Heußen Sascha12ORCID,Rispler Manuel12,Müller Markus12

Affiliation:

1. Institute for Quantum Information, RWTH Aachen University, Aachen, Germany

2. Institute for Theoretical Nanoelectronics (PGI-2), Forschungszentrum Jülich, Jülich, Germany

Abstract

Topological color codes are widely acknowledged as promising candidates for fault-tolerant quantum computing. Neither a two-dimensional nor a three-dimensional topology, however, can provide a universal gate set {, , }, with the gate missing in the two-dimensional and the gate in the three-dimensional case. These complementary shortcomings of the isolated topologies may be overcome in a combined approach, by switching between a two- and a three-dimensional code while maintaining the logical state. In this work, we construct resource-optimized deterministic and nondeterministic code-switching protocols for two- and three-dimensional distance-three color codes using fault-tolerant quantum circuits based on flag qubits. Deterministic protocols allow for the fault-tolerant implementation of logical gates on an encoded quantum state, while nondeterministic protocols may be used for the fault-tolerant preparation of magic states. Taking the error rates of state-of-the-art trapped-ion quantum processors as a reference, we find a logical failure probability of 3% for deterministic logical gates, which cannot be realized transversally in the respective code. By replacing the three-dimensional distance-three color code in the protocol for magic state preparation with the morphed code introduced in Vasmer and Kubica [PRX Quantum 3, 030319 (2022)], we reduce the logical failure rates by 2 orders of magnitude, thus rendering it a viable method for magic state preparation on near-term quantum processors. Our results demonstrate that code switching enables the fault-tolerant and deterministic implementation of a universal gate set under realistic conditions, and thereby provide a practical avenue to advance universal, fault-tolerant quantum computing and enable quantum algorithms on first, error-corrected logical qubits. Published by the American Physical Society 2024

Funder

U.S. Army Research Office

Deutsche Forschungsgemeinschaft

Office of the Director of National Intelligence

Intelligence Advanced Research Projects Activity

EU Quantum Technology Flagship

European Union’s Horizon Europe research and innovation programme

ERC Starting Grant QNets

Hightech Agenda Bayern Plus

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lift-connected surface codes;Quantum Science and Technology;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3