Effect of Nonunital Noise on Random-Circuit Sampling

Author:

Fefferman Bill1ORCID,Ghosh Soumik1,Gullans Michael234,Kuroiwa Kohdai56ORCID,Sharma Kunal7

Affiliation:

1. University of Chicago

2. Joint Center for Quantum Information and Computer Science and Joint Quantum Institute

3. University of Maryland

4. National Institute of Standards and Technology (NIST)

5. University of Waterloo

6. Perimeter Institute for Theoretical Physics

7. IBM T. J. Watson Research Center

Abstract

In this work, drawing inspiration from the type of noise present in real hardware, we study the output distribution of random quantum circuits under practical nonunital noise sources with constant noise rates. We show that even in the presence of unital sources such as the depolarizing channel, the distribution, under the combined noise channel, never resembles a maximally entropic distribution at any depth. To show this, we prove that the output distribution of such circuits never anticoncentrates—meaning that it is never too “flat”—regardless of the depth of the circuit. This is in stark contrast to the behavior of noiseless random quantum circuits or those with only unital noise, both of which anticoncentrate at sufficiently large depths. As a consequence, our results shows that the complexity of random-circuit sampling under realistic noise is still an open question, since anticoncentration is a critical property exploited by both state-of-the-art classical hardness and easiness results. Published by the American Physical Society 2024

Funder

Air Force Office of Scientific Research

National Science Foundation

U.S. Department of Energy

Office of Science

Mike and Ophelia Lazaridis Fellowship

Funai Foundation

Perimeter Residency Doctoral Award

National Quantum Information Science Research Centers

DOE ““Quantum Information Science Enabled Discovery”

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3