Finite-Resource Performance of Small-Satellite-Based Quantum-Key-Distribution Missions

Author:

Islam Tanvirul12ORCID,Sidhu Jasminder S.3ORCID,Higgins Brendon L.4,Brougham Thomas3,Vergoossen Tom5,Oi Daniel K.L.3ORCID,Jennewein Thomas4,Ling Alexander122

Affiliation:

1. Centre for Quantum Technologies

2. National University of Singapore

3. University of Strathclyde

4. University of Waterloo

5. SpeQtral Pte. Ltd.

Abstract

In satellite-based quantum-key-distribution (QKD), the number of secret bits that can be generated in a single satellite pass over the ground station is severely restricted by the pass duration and the free-space optical channel loss. High channel loss may decrease the signal-to-noise ratio due to background noise, reduce the number of generated raw key bits, and increase the quantum bit error rate (QBER), all of which have detrimental effects on the output secret key length. Under finite-size security analysis, a higher QBER increases the minimum raw key length necessary for nonzero secret-key-length extraction due to less efficient reconciliation and postprocessing overheads. We show that recent developments in finite-key analysis allow three different small-satellite-based QKD projects, CQT-Sat, the United Kingdom QUARC-ROKS, and QEYSSat, to produce secret keys even under conditions of very high loss, improving on estimates based on previous finite-key bounds. This suggests that satellites in low Earth orbit can satisfy finite-size security requirements but that this remains challenging for satellites further from Earth. We analyze the performance of each mission to provide an informed route toward improving the performance of small-satellite QKD missions. We highlight the short- and long-term perspectives on the challenges and potential future developments in small-satellite-based QKD and quantum networks. In particular, we discuss some of the experimental and theoretical bottlenecks and the improvements necessary to achieve QKD and wider quantum networking capabilities in daylight and at different altitudes. Published by the American Physical Society 2024

Funder

Engineering and Physical Sciences Research Council

Canadian Space Agency

National Research Foundation (NRF) Singapore

Ministry of Education, Singapore

EPSRC International Network in Space Quantum Technologies

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3