Generating Synthetic Power Grids Using Exponential Random Graph Models

Author:

Giacomarra Francesco1ORCID,Bet Gianmarco2ORCID,Zocca Alessandro3ORCID

Affiliation:

1. University of Trieste

2. University of Florence

3. Vrije Universiteit Amsterdam

Abstract

Synthetic power grids enable real-world energy system simulations and are crucial for algorithm testing, resilience assessment, and policy formulation. We propose a novel method for the generation of synthetic transmission power grids using exponential random graph (ERG) models. Our two main contributions are (1) the formulation of an ERG model tailored specifically for capturing the topological nuances of power grids and (2) a general procedure for estimating the parameters of such a model conditioned on working with connected graphs. From a modeling perspective, we identify edge counts per bus type and k-triangles as crucial topological characteristics for synthetic power-grid generation. From a technical perspective, we develop a rigorous methodology to estimate the parameters of an ERG constrained to the space of connected graphs. The proposed model is flexible, easy to implement, and successfully captures the desired topological properties of power grids. Published by the American Physical Society 2024

Funder

National Recovery and Resilience Plan

European Union Next-GenerationEU

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3