Se Inter-Diffusion Limits Absorber Layer Grain Growth in CdSe - CdTe Photovoltaics

Author:

Altamimi T.F.S.1ORCID,Leaver J.F.2ORCID,Durose K.2,Major J.D.2,Mendis B.G.1ORCID

Affiliation:

1. Department of Physics, Durham University, South Road, Durham, DH1 3LE, United Kingdom

2. Department of Physics, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool, L69 7ZF, United Kingdom

Abstract

Diffusion of Se from the CdSe window layer into the CdTe absorber improves the short circuit current density by narrowing the band gap and increasing the carrier lifetime. Thicker CdSe layers, however, show a dramatic loss in photocurrent collection due to Se over-alloying. Electron microscopy investigations show that this decrease in performance is due to the formation of small grains (∼783 nm average diameter), which exhibit grain boundary porosity in the Se inter-diffusion region. The larger grain boundary area and void free surfaces give rise to higher levels of nonradiative recombination, and therefore, a lower photocurrent. It is proposed that the small grain size is due to a drag force exerted by segregated Se solute atoms on a moving grain boundary, while faster Se diffusion along the grain boundaries results in vacancy build up and porosity due to the Kirkendall effect. The results indicate that the device processing conditions must be carefully controlled such that the negative effects of Se alloying (i.e., smaller grains, Kirkendall voids) do not undermine its benefits. Published by the American Physical Society 2024

Funder

EPSRC Centre for Doctoral Training

New and Sustainable Photovoltaics

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3