Superfluid stiffness and Josephson quantum capacitance: Adiabatic approach and topological effects

Author:

Wang Jun-Ang12ORCID,Assili Mohamed1ORCID,Kotetes Panagiotis1ORCID

Affiliation:

1. Institute of Theoretical Physics

2. University of Chinese Academy of Sciences

Abstract

We bring forward a unified framework for the study of the superfluid stiffness and the quantum capacitance of superconducting platforms exhibiting conventional spin-singlet pairing. We focus on systems which in their normal phase contain topological band touching points or crossings, while in their superconducting regime feature a fully gapped energy spectrum. Our unified description relies on viewing these two types of physical quantities as the charge current and density response coefficients obtained for slow spatiotemporal variations of the superconducting phase. Within our adiabatic formalism, the two coefficients are given in terms of Berry curvatures defined in synthetic spaces. Our paper lays the foundation for the systematic description of topological diagonal superfluid responses induced by singularities dictating the synthetic Berry curvatures. We exemplify our approach for concrete one- and two-dimensional models of superconducting topological (semi)metals. We discuss topological phenomena which arise in the superfluid stiffness of bulk systems and the quantum capacitance of Josephson junctions. We show that both coefficients become proportional to a topological invariant which counts the number of topological touchings or crossings of the normal phase band structure. These topological effects can be equivalently viewed as manifestations of chiral anomaly. Our predictions appear experimentally testable in topological semimetals with proximity-induced pairing, such as in graphene-superconductor hybrids at charge neutrality. Published by the American Physical Society 2024

Funder

National Natural Science Foundation of China

Publisher

American Physical Society (APS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3