Cooper quartets in interacting hybrid superconducting systems

Author:

Chirolli Luca12ORCID,Braggio Alessandro1ORCID,Giazotto Francesco1ORCID

Affiliation:

1. NEST

2. Technology Innovation Institute

Abstract

Cooper quartets represent exotic fermion aggregates describing correlated matter at the basis of charge-4e superconductivity and offer a platform for studying four-body interactions, of interest for topologically protected quantum computing, nuclear matter simulations, and more general strongly correlated matter. Focusing on solid-state systems, we show how to quantum design Cooper quartets in a double-dot system coupled to ordinary superconducting leads through the introduction of an attractive interdot interaction. A fundamentally novel, maximally correlated double-dot ground state, in the form of a superposition of vacuum |0 and four-electron state |4e, emerges as a narrow resonance in a many-body quartet correlator that is accompanied by negligible pair correlations and features a rich phenomenology. The system represents an instance of correlated Andreev matter and the results open the way to the exploration of interaction effects in hybrid superconducting devices, and the study of novel correlated states of matter with ingredients available in a quantum solid-state laboratory. Published by the American Physical Society 2024

Funder

Horizon 2020

Fondazione Cariplo

Royal Society

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3