Quantum soliton-trains of strongly correlated impurities in Bose-Einstein condensates

Author:

Hiyane Hoshu1ORCID,Busch Thomas1ORCID,Fogarty Thomás1ORCID

Affiliation:

1. Okinawa Institute of Science and Technology Graduate University

Abstract

Strongly correlated impurities immersed in a Bose-Einstein condensate (BEC) can form a periodic structure of tightly localized single atoms due to competing inter and intraspecies interactions, leading to a self-organized pinned state. In this work, we show numerically that the impurities in the self-pinned state form a soliton-train, as a consequence of a BEC-mediated attractive self-interaction and ordering due to the exclusion principle. The dynamics of the impurities possess the characteristics of bright matter-wave soliton trains as often seen in classical fields; however, in the few impurities cases, the detailed nature of collisions is determined by their quantum statistics. Published by the American Physical Society 2024

Funder

Okinawa Institute of Science and Technology Graduate University

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3