Crystallization and topology-induced dynamical heterogeneities in soft granular clusters

Author:

Bogdan Michał12ORCID,Pineda Jesus3ORCID,Durve Mihir4,Jurkiewicz Leon12,Succi Sauro4567,Volpe Giovanni3ORCID,Guzowski Jan12ORCID

Affiliation:

1. Institute of Physical Chemistry

2. Polish Academy of Sciences

3. University of Gothenburg

4. Istituto Italiano di Tecnologia (IIT)

5. Istituto per le Applicazioni del Calcolo del

6. Consiglio Nazionale delle Ricerche

7. Harvard University

Abstract

Soft-granular media, such as dense emulsions, foams or tissues, exhibit either fluid- or solidlike properties depending on the applied external stresses. Whereas bulk rheology of such materials has been thoroughly investigated, the internal structural mechanics of finite soft-granular structures with free interfaces is still poorly understood. Here, we report the spontaneous crystallization and melting inside a model soft granular cluster—a densely packed aggregate of N3040 droplets engulfed by a fluid film—subject to a varying external flow. We develop machine learning tools to track the internal rearrangements in the quasi-two-dimensional cluster as it transits a sequence of constrictions. As the cluster relaxes from a state of strong mechanical deformations, we find differences in the dynamics of the grains within the interior of the cluster and those at its rim, with the latter experiencing larger deformations and less frequent rearrangements, effectively acting as an elastic membrane around a fluidlike core. We conclude that the observed structural-dynamical heterogeneity results from an interplay of the topological constrains, due to the presence of a closed interface, and the internal solid-fluid transitions. We discuss the universality of such behavior in various types of finite soft granular structures, including biological tissues. Published by the American Physical Society 2024

Funder

Horizon 2020

H2020 European Research Council

Narodowe Centrum Nauki

National Science Center within Sonata Bis

Publisher

American Physical Society (APS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3